Low EMI Spread Spectrum Multiplier IC (in Die or Package)

FEATURES

- Spread Spectrum Clock Generator/Multiplier with output selectable from 1x to $8 x$.
- 13 MHz to 240 MHz output with output enable.
- 13 MHz to 30 MHz reference input frequency accepted from crystal or external clock signal.
- Reduced EMI from Spread Spectrum Modulation, with selectable modulation amplitude for Center Spread, Down Spread or Asymmetric Spread.
- TTL/CMOS compatible outputs.
- 3.3 V Operating Voltage.
- 150 ps maximum cycle-to-cycle jitter.
- Available in $16-\mathrm{Pin} 150 \mathrm{mil}$ SSOP or DIE.

DESCRIPTION

The PLL701-10 is a low EMI Clock Generator and Multiplier for high-speed digital systems. It uses Spread Spectrum Technology (SST) and permits different levels of EMI reduction by selecting the amplitude of the applied SST. The SST feature can be turned off. An output enable input is also used. The chip operates with input frequencies ranging from 13 to 30 MHz and provides 1 x to 8 x at its output.

OUTPUT CLOCK (FOUT) SELECTION

M2	M1	M0	FIN/XIN $(\mathbf{M H z})$	Multiplier	FOUT $($ MHz $)$
0	0	0	$13 \sim 28$	X1	$13 \sim 28$
0	0	1	$13 \sim 28$	X2	$26 \sim 56$
0	1	0	$14 \sim 30$	X3	$42 \sim 90$
0	1	1	$13 \sim 28$	X4	$52 \sim 112$
1	0	0	$20 \sim 30$	X5	$100 \sim 150$
1	0	1	$17 \sim 30$	X6	$102 \sim 180$
1	1	0	$15 \sim 30$	X7	$105 \sim 210$
1	1	1	$13 \sim 28$	X8	$104 \sim 224$

BLOCK DIAGRAM

PACKAGE PIN CONFIGURATION

XIN/FIN $=10 \sim 30 \mathrm{MHz}$

DIE PAD CONFIGURATION

Note: ${ }^{\wedge}$: Internal pull-up resistor (120k Ω for SD0, $30 \mathrm{k} \Omega$ for SC0SC2, SD1, M0-M2 and OE). The internal pull-up resistor results in a default high value when no pull-down resistor is connected to this pin.
*: SD0 and SD1 are latched upon power-up.

PhaseLink
Corporation

Low EMI Spread Spectrum Multiplier IC (in Die or Package)

SPREAD SPECTRUM SELECTION TABLE

Notes: C: Center Spread. A: Asymmetric Spread. D: Down Spread.

Low EMI Spread Spectrum Multiplier IC (in Die or Package)

PIN/PAD DESCRIPTIONS

Name	Pin \#	Pad \#	Type	Description
XIN/FIN	1	22	I	Crystal input to be connected to fundamental parallel mode crystal. ($\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$) or clock input.
XOUT/SD0	2	23	B	At power-up, this pin is acts as input pin to select the modulation rate and is latched in. After the input sampling, it is used as crystal output connector. $120 \mathrm{k} \Omega$ internal pull up resistor.
M2	3	28	1	Digital control input to select output frequency. $30 \mathrm{k} \Omega$ internal pullup.
M1	4	29	I	Digital control input to select output frequency. $30 \mathrm{k} \Omega$ internal pullup.
M0	5	30	1	Digital control input to select output frequency. $30 \mathrm{k} \Omega$ internal pullup.
SCO	6	34	1	Digital control input to select spread spectrum modulation. $30 \mathrm{k} \Omega$ internal pull-up.
SC1	7	35	I	Digital control input to select spread spectrum modulation. $30 \mathrm{k} \Omega$ internal pull-up.
SC2	8	1	1	Digital control input to select spread spectrum modulation. $30 \mathrm{k} \Omega$ internal pull-up.
SC3	12	12	1	Digital control input to select spread spectrum modulation. $30 \mathrm{k} \Omega$ internal pull-up.
FOUT	10	8	0	Modulated Clock Frequency Output. The frequency before modulation is synthesized by multiplying the input frequency by 1 X to 8 X , depending on $\mathrm{SD}(0: 1)$ and $\mathrm{SC}(0: 3)$.
OE	11	10	I	Output Enable. When low, Tri-states all outputs. $30 \mathrm{k} \Omega$ internal pull-up.
VDD	13	13,14,15	P	3.3 V Power Supply.
REF/SD1	14	16	B	At power-up, this pin acts as input pin to select the modulation rate and is latched in. After the input sampling, this pin provides a buffered Reference Clock Output of the same frequency as the crystal or clock input. $30 \mathrm{k} \Omega$ internal pull-up.
AVDD	15	17,18,19	P	3.3V Analog power supply.
GNDOSC	N/A	25	P	Ground for Oscillator circuitry.
GNDBUF	N/A	7	P	Ground for output buffer circuitry.
GND	9 and 16	4,5,6,20,21	P	Ground.

Notes: B - bi-directional pin; I - input pin; P - power supply/ground pin.

DIE SPECIFICATIONS

Name	Value
Size	$104 \times 69 \mathrm{mil}$
Reverse side	GND
Pad dimensions	80 micron $\times 80$ micron
Thickness	10 mil

Low EMI Spread Spectrum Multiplier IC (in Die or Package)

FUNCTIONAL DESCRIPTION

Selectable spread spectrum and modulation rates

The PLL701-10 provides selectable multiplier factors (1 x to 8 X), selectable spread spectrum modulation, as well as selectable modulation rate. Selection is made by connecting specific input pins to a logical "zero" or "one". Pins 6 (SC0), 7 (SC1), 8 (SC2) and 12 (SC3) are used as inputs to select the spread spectrum modulation as shown on the spread spectrum selection table (page 2). Pins 3 (M2), 4 (M1), 5 (M0) are used as inputs to select the output frequency as shown on the output clock selection table (page 1). Pin 11 is the output enable pin, that tri-states all outputs when low (logical "zero").

In order to reduce the number of pins on the chip, the PLL701-10 uses pin 2 and 14 (XOUT/SD0 and REF/SD1) as a bi-directional pin. The pins serve as modulation rate selector inputs (SD0 and SD1) upon power-up (see modulation rate table on page 1), and as XOUT crystal connection (pin 2), and REF output signal (pin 14) as soon as the inputs have been latched.

Connecting a selection pin to a logical "one"

All selection pins have an internal pull-up resistor ($30 \mathrm{k} \Omega$ for pins $3,4,5,6,7,8,11,12,14$ and $120 \mathrm{k} \Omega$ for pin 2). This internal pull-up resistor will pull the input value to a logical "one" (pull-up) by default, i.e. when no resistive load is connected between the pin and GND. No external pull-up resistor is therefore required for connecting a logical "one" upon power-up.

Connecting a selection pin to a logical "zero"

For an input only pin, i.e. all input pins except XOUT/SD0 (pin 2) and REF/SD1 (pin 14), the pin simply needs to be grounded to pull the input down to a logical "zero". Connecting the bi-directional pins (SD0 and SD1) to a logical "zero" will however require the use of an external loading resistor between the pin and GND that has to be sufficiently small (compared to the internal pull-up resistor) so that the pin voltage be pulled below 0.8 V (logical "zero"). In order to avoid loading effects when the pin serves as output, the value of the external pull-down resistor should however be kept as large as possible. In general, it is recommended to use an external resistor of around Rup/4 (e.g. $27 \mathrm{k} \Omega$ for pin 2 and $4.7 \mathrm{k} \Omega$ for pin 14, see Application Diagram).

APPLICATION DIAGRAM FOR OUTPUT AND MODULATION SELECTION

Low EMI Spread Spectrum Multiplier IC (in Die or Package)

ELECTRICAL SPECIFICATIONS

1. Absolute Maximum Ratings

PARAMETERS	SYMBOL	MIN.	MAX.	UNITS
Supply Voltage	V_{DD}		4.6	V
Input Voltage, dc	V_{I}	-0.5	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
Output Voltage, dc	V_{D}	-0.5	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
Storage Temperature	T_{S}	-65	150	${ }^{\circ} \mathrm{C}$
Ambient Operating Temperature*	T_{A}	-40	85	${ }^{\circ} \mathrm{C}$
Junction Temperature	T_{J}		125	${ }^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)			260	${ }^{\circ} \mathrm{C}$
ESD Protection, Human Body Model			2	kV

Exposure of the device under conditions beyond the limits specified by Maximum Ratings for extended periods may cause permanent damage to the device and affect product reliability. These conditions represent a stress rating only, and functional operations of the device at these or any other conditions above the operational limits noted in this specification is not implied.

* Note: Operating Temperature is guaranteed by design for all parts (COMMERCIAL and INDUSTRIAL), but tested for COMMERCIAL grade only.

2. DC/AC Specifications

PARAMETERS	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Supply Voltage	VDD		2.97		3.63	V
Input High Voltage	$\mathrm{V}_{\text {IH }}$		0.7* V VD			V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$				$0.3 * V_{\text {DD }}$	V
Input High Current	$\mathrm{IIH}^{\text {I }}$				100	$\mu \mathrm{A}$
Input Low Current	IIL				100	$\mu \mathrm{A}$
Output High Voltage	Voh	$\mathrm{l}_{\text {OH }}=5 \mathrm{~mA}, \mathrm{~V}_{\text {DD }}=3.3 \mathrm{~V}$	2.4			
Output Low Voltage	Vol	$\mathrm{l}_{\mathrm{L}}=6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}$			0.4	
Input Frequency	Fxin	When using a crystal	15		30	MHz
	Fin	When using reference clock	15		30	MHz
Maximum interruption of $\mathrm{F}_{\text {IN }}$		When using reference clock			100	$\mu \mathrm{S}$
Load Capacitance	CL	Between Pin XIN and XOUT*		18		pF
Pull-up Resistor	$\mathrm{R}_{\text {up }}$	PIN 2		120		$\mathrm{k} \Omega$
Pull-up Resistor	Rup	PIN 3,4,5,6,7,8,11,12		30		$\mathrm{k} \Omega$
Short Circuit Current	I_{sc}			25		mA
3.3V Dynamic Supply Current	Icc	No Load		20		mA

*Note: Pin XIN and XOUT each has a 36 pF capacitance. When used with a XTAL, the two capacitors combined load the crystal with 18 pF . If driving XIN with a reference clock signal, the load capacitance will be 36 pF (typical).

PLL701-10
Low EMI Spread Spectrum Multiplier IC (in Die or Package)
3. TIMING CHARACTERISTICS

PARAMETERS	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Rise Time	T_{r}	Measured at 0.8V ~2.0V @ 3.3V	0.8	0.95	1.1	ns
Fall Time	T_{f}	Measured at 2.0V $\sim 0.8 \mathrm{~V} @ 3.3 \mathrm{~V}$	0.78	0.85	0.9	ns
Output Duty Cycle	D_{T}		45	50	55	$\%$
Cycle to Cycle Jitter	$\mathrm{T}_{\text {cyc-cyc }}$	$\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 4, \mathrm{X} 8$ FOUT @ 3.3V			100	ps
Cycle to Cycle Jitter	$\mathrm{T}_{\text {cyc-cyc }}$	$\mathrm{X} 3, \mathrm{X} 5, \mathrm{X}, \mathrm{X} 7$ FOUT @ 3.3V			150	ps

Low EMI Spread Spectrum Multiplier IC (in Die or Package)

PAD ASSIGNMENT (LOWER LEFT CORNER: $X=0, Y=0$)

Pad \#	Name	X ($\mu \mathrm{m}$)	$\mathrm{Y}(\mu \mathrm{m})$
1	SC2	338.9	104.7
2	N/C	569	104.7
3	N/C	780.5	104.7
4	GND	1027.6	104.7
5	GND	1127.3	104.7
6	GND	1284.5	104.7
7	GNDBUF	1595.1	139.7
8	FOUT	1595.1	381.7
9	N/C	1595.1	596.3
10	OE	1595.1	811.9
11	N/C	1595.1	970.3
12	SC3	1595.1	1069.3
13	VDD (Optional)	1595.1	1312.3
14	VDD (Optional)	1595.1	1555.6
15	VDD	1595.1	1656.8
16	REF/SD1	1595.1	1879.9
17	AVDD	1595.1	2093
18	AVDD	1595.1	2390.6
19	AVDD	1369.2	2435
20	GND (Optional)	1037.3	2435
21	GND (Optional)	824.7	2435
22	XIN	529.7	2435
23	XOUT/SD0	105.6	2343.5
24	N/C	105.6	2136.1
25	GNDOSC	105.6	2035.6
26	N/C	105.6	1934.9
27	N/C	105.6	1741.5
28	M2	105.6	1641.4
29	M1	105.6	1396.2
30	N/C	105.6	1180.3
31	N/C	105.6	993.5
32	N/C	105.6	836.7
33	N/C	105.6	680.1
34	SC0	105.6	354.9
35	SC1	105.6	110.7

PhaseLink

Low EMI Spread Spectrum Multiplier IC (in Die or Package)

PACKAGE INFORMATION

16 PIN SSOP

	mm		BSC	
Symbol	Min.	Max.	Min.	Max.
A	1.35	1.75	0.053	0.069
A1	0.10	0.25	0.004	0.010
B	0.20	0.30	0.008	0.012
C	0.18	0.25	0.007	0.010
D	4.80	5.00	0.189	0.197
E	3.81	3.99	0.150	0.157
H	5.79	6.20	0.228	0.244
L	0.41	1.27	0.016	0.050
e	0.635 BASIC	0.025 BASIC		

ORDERING INFORMATION

PhaseLink Corporation, reserves the right to make changes in its products or specifications, or both at any time without notice. The information furnished by Phaselink is believed to be accurate and reliable. However, PhaseLink makes no guarantee or warranty concerning the accuracy of said information and shall not be responsible for any loss or damage of whatever nature resulting from the use of, or reliance upon this product.

LIFE SUPPORT POLICY: PhaseLink's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President of PhaseLink Corporation.

